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Abstract

The problem of fault tolerance in cooperative manipulators rigidly connected to an undeformable load is addressed in this paper. Four

categories of faults are considered: free-swinging joint faults (FSJFs), locked joint faults (LJFs), incorrectly measured joint position faults

(JPFs), and incorrectly measured joint velocity faults (JVFs). Free-swinging and locked joint faults are detected via artificial neural

networks (ANNs). Incorrectly measured joint position and velocity faults are detected by considering the kinematic constraints of the

cooperative system. When a fault is detected, the control system is reconfigured according to the nature of the isolated fault and the task

is resumed to the largest extent possible. The fault tolerance framework is applied to an actual system composed of two cooperative

robotic manipulators. The results presented demonstrate the feasibility and performance of the methodology.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Robotic manipulators have been deployed in an ever
growing number of unstructured and/or hazardous envir-
onments, such as in outer space and in deep sea. Robots are
used in these environments to limit or eliminate the
presence of human beings in such dangerous places,
or due to their capability to execute repetitive tasks
very reliably. Faults, however, can put at risk the robots,
their task, the working environment, and any humans
present there.

Faults in robots are mainly due to their inherent
complexity. There are several sources of faults in robots,
such as electrical, mechanical, and hydraulic (Visinsky
et al., 1994). In fact, the mean-time-to-failure of industrial
robots can be considered small for their intended life
expectancy and cost. According to studies published in the
decade of 1990, the recorded mean-time-to-failure of
industrial robots was only 500–2500 h (Dhillon and
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Fashandi, 1997). This number is probably smaller in
unstructured or hazardous environments due to external
factors, such as extreme temperatures, moving obstacles,
and radiation. Therefore, there are good reasons to
research and develop fault detection and isolation (FDI)
systems for robots.
In most environments, a robot can be repaired after the

FDI. There are some environments, however, where
human beings cannot be sent to make the necessary
repairs, and, thus, fault tolerance must be provided to the
robot. This is the case of robots operating in hazardous or
distant places. Fault tolerance is also necessary when the
robot must be kept continuously operating even with a
fault, such as when robots are used to disarm explosives.
Robotic systems with actuation redundancy are inter-

esting in applications where fault tolerance is needed
because the number of degrees of freedom (dof) in these
systems is generally higher than the dof required to execute
the task. Furthermore, as in the human case where the use
of two arms means an advantage over the use of only one
arm in several cases, two or more robots can execute tasks
that are difficult or even impossible for only one
robot (Vukobratovic and Tuneski, 1998). For example,
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cooperative robots can be used to manipulate heavy, large,
or flexible loads, assemble structures, and carry objects that
can slide from only one robot. Humanoid robots are
examples of robotic systems with cooperative manipulation
capability. Actuation redundancy makes the use of
cooperative robots in unstructured and/or hazardous
environments very appealing. On the other hand, as
in the case for single manipulators, fault tolerance is
crucial for cooperative arms to operate reliably in these
environments.

Because of the dynamic coupling of joints, inertia, and
gravitational torques, faulty arms can quickly accelerate
into wild motions that can cause serious damage (Visinsky
et al., 1994). If the cooperative system’s controller is not
designed to detect and isolate the faults, the internal forces
increase and cause damage to the load or instability to the
system. While the problem of faults in single robotic arms
has been studied by several researchers in the recent years,
e.g. (English and Maciejewski, 1998; Goel et al., 2004;
McIntyre et al., 2005; Miyagi and Riascos, 2006; Vemuri
and Polycarpou, 2004; Visinsky et al., 1995), only a few
studied the corresponding problem in cooperative manip-
ulators (Liu et al., 1999; Monteverde and Tosunoglu, 1999;
Tinós et al., 2006) or parallel manipulators (Hassan and
Notash, 2004, 2005). To the best of the authors’ knowl-
edge, fault tolerance frameworks, i.e., fault tolerance
systems with fault detection and control reconfiguration,
were proposed only for single manipulators (English and
Maciejewski, 1998; Visinsky et al., 1995).

In this work, a fault tolerance framework for cooperative
manipulators is proposed. Section 2 describes the kine-
matic and the dynamic models of cooperative manipula-
tors, and Section 3 describes the fault tolerance
methodology. Four categories of faults are considered:
free-swinging joint faults (FSJFs), locked joint faults
(LJFs), incorrectly measured joint position faults (JPFs),
and incorrectly measured joint velocity faults (JVFs). First,
the faults are detected by an FDI system using neural
networks and knowledge of the kinematic constraints of
the cooperative system (Section 4). Then, the control
system is reconfigured according to the nature of the
isolated fault (Section 5). Section 6 presents the results of
the proposed fault tolerance framework applied to a real
system composed of two cooperative manipulators. Final-
ly, the conclusions are presented in Section 7.

2. Cooperative manipulators

The equation of motion for the ith arm of a fault-free
multi-robot system with m arms rigidly connected to an
undeformable object (load) is

€qi ¼M�1i ðqiÞ½si þ JTi ðqiÞhi � giðqiÞ � Ciðqi; _qiÞ_qi�, (1)

where qi is the vector of joint positions of arm i,
i ¼ 1; . . . ;m, si is the vector of torques applied at the joints
of arm i, MiðqiÞ is its inertia matrix, Ciðqi; _qiÞ is its matrix of
centrifugal and Coriolis terms, giðqiÞ is its vector of
gravitational terms, JiðqiÞ is its geometric Jacobian (from
joint velocity to end-effector velocity), and hi is the force
vector at the end-effector of arm i; friction terms are not
shown for simplicity. The combined dynamics of all arms
can be written as

€q ¼M�1ðqÞ½sþ JTðqÞh� gðqÞ � Cðq; _qÞ_q�, (2)

where q ¼ ½qT1 q
T
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In the cooperative system, the equation of motion for the
load is

Mo_vo þ boðxo; voÞ ¼ JTo ðxoÞh, (3)

where xo is the k-dimensional vector of position and
orientation at the origin of the frame attached to the center
of mass of the load, vo is the vector of linear and angular
velocities of the load, bo is the vector of centrifugal,
Coriolis, and gravitational terms, Mo is the load inertia
matrix, and JoðxoÞ ¼ ½J

T
o1ðxoÞ . . . J

T
omðxoÞ�

T, where JoiðxoÞ

converts velocities of the load into velocities of the end-
effector of arm i. The velocities vo can be computed by
vo ¼ TðxoÞ _xo (Sciavicco and Siciliano, 1996), where TðxoÞ is
a transformation matrix that relates the angular velocities
to the derivative of the minimal representation of the
orientation (Euler angles or RPY angles) in the three-
dimensional space (TðxoÞ ¼ I for planar manipulators).
As it is possible to compute the positions and orienta-

tions of the load using the positions of the joints of any arm
of the cooperative system, the following kinematic con-
straint appears

xo ¼ u1ðq1Þ ¼ u2ðq2Þ ¼ � � � ¼ umðqmÞ, (4)

where uiðqiÞ is the vector of the position and orientation of
the load computed via the joint positions of arm i, i.e., the
direct kinematics of arm i. The velocities of the load are
constrained by

vo ¼ D1ðq1Þ_q1 ¼ D2ðq2Þ_q2 ¼ � � � ¼ DmðqmÞ_qm, (5)

where DiðqiÞ ¼ J�1oi ðxoÞJiðqiÞ is the Jacobian relating joint
velocities of arm i and load velocities.
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Fig. 1. Fault tolerance system. h is the vector of measured joint positions,^
indicates that the vector is estimated, the subscript d refers to the desired

vector, and the matrix PsðxoÞ converts the forces in the end-effectors to

squeeze forces.
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The control of cooperative manipulators is a complex
task due to the interaction among the arms caused by the
force constraints. The control should be coordinated and
the squeeze forces at the load should be minimized to avoid
damage to the system. The squeeze forces are the
components of the forces in the object that are in the
squeeze subspace (i.e., the ones that do not contribute to
the motion of the load). The forces that contribute to the
motion of the load are called motion forces; they lie in the
motion subspace and are orthogonal to the squeeze forces
(Wen and Kreutz-Delgado, 1992).

Several solutions were reported in the literature to deal
with the control problem of fault-free cooperative manip-
ulators rigidly connected to an undeformable object, e.g.
Luh and Zheng (1987), Carignan and Akin (1988), Wen
and Kreutz-Delgado (1992), Bonitz and Hsia (1996). When
force and motion must be controlled in robots, hybrid
control can be employed (Jatta et al., 2006). The hybrid
control method for fault-free cooperative manipulators
developed in Wen and Kreutz-Delgado (1992) is particu-
larly interesting because motion and squeeze control are
independently dealt with, and because it does not utilize the
inertia matrix of the robots in the control law, which, in
general, reduces the effect of modeling errors. In the
cooperative system, joint torques in the form DTðqÞhosc,
where DðqÞ ¼ ½D1ðq1ÞD2ðq2Þ . . .DmðqmÞ� and hosc is in the
squeeze subspace, do not affect the motion if there are no
singular configuration of the arms. However, the motion of
the arms affects the squeeze forces due to the squeeze
components of the d’Alembert (inertial) forces. Thus, in
Wen and Kreutz-Delgado (1992), a stable motion control
with compensation of the gravitational torques is firstly
designed ignoring the squeeze terms. Then, the squeeze
control is addressed considering the component of the
squeeze forces caused by the motion as a disturbance.

In this work, the fault-free system is controlled by the
hybrid control proposed in Wen and Kreutz-Delgado
(1992). The controller used for the fault-free system,
however, cannot be used for the cooperative system with
FSJFs or LJFs. As the controller was designed considering
that all joints are directly actuated, the torques applied to
control the squeeze in the object generally do not project
forces only in the squeeze subspace when there are FSJFs
or LJFs. In this way, the squeeze control influences the
motion control and can make the system unstable or
drastically increase the squeeze forces.

3. Fault tolerance system

The fault tolerance system addresses the following
categories of faults: FSJFs, where an actuation loss occurs
in a joint of one arm; LJFs, where a joint of one arm is
locked; JPFs, where the measurement of one joint position
is not correct; and JVFs, where the measurement of one
joint velocity is not correct. JPFs and JVFs can occur due
to sensor faults, for example. The fault tolerance system
proposed here is designed for cooperative manipulators
rigidly connected to an undeformable load. When the
manipulators are not connected to a load, traditional fault
tolerant methods designed for individual manipulators can
be used (Visinsky et al., 1995).
The fault tolerance scheme proposed is displayed in

Fig. 1. The faults are firstly detected and isolated by an
FDI system. When a fault is detected, the arms may be
locked by brakes and the trajectory planning may be
reconfigured starting with zero velocities. Other option is
to reconfigure the trajectory planning starting with the
current load velocity without applying the brakes. The
choice depends on the joint configurations, joint velocities,
and the parameters of the cooperative system, such as
maximum torque allowed and joint limits.
Roughly speaking, in the proposed framework when an

FSJF or an LJF is detected, the control system is
reconfigured (Section 5). If a JPF or a JVF is detected,
the positions or velocities of the faulty joint are estimated
using the positions and velocities of the other joints and the
same controller used for the fault-free system is utilized.

4. FDI system

In this section, an FDI system composed of three steps is
proposed. First, JPFs are detected by analyzing the
position constraints (4). Then, JVFs are detected by
analyzing the velocity constraints (5). The last step is the
detection of FSJFs and LJFs via two artificial neural
networks (ANNs). This sequence is important because
undetected JPFs can cause false detection of other faults as
joints position readings are used to compute the velocities
of the load in (5) and as inputs of the first ANN. The same
occurs for undetected JVFs in FSJFs and LJFs, as joint
velocity readings are used as inputs of the first ANN.
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This sequence is also important because joint velocities are
very often reconstructed from joint position measurements.
In each sample time, the FDI system indicates if the robots
are working normally or with a fault. The occurrence of
only one fault at a time is considered in this work, although
multiple faults can coexist as long as they do not occur at
the same instant in time.

4.1. Joint position and joint velocity faults

In Notash (2000), joint position sensor faults are
detected in parallel manipulators by using the kinematic
constraints imposed by the closed kinematic chain. The
direct kinematics problem (given the joint positions,
identify the position and orientation of the load) is not
trivial in parallel manipulators because they usually have
one or more unsensed joints. The direct kinematics
problem is however easier in cooperative manipulators
because all joints are assumed to be equipped with sensors.

As the load position xo can be computed using the joint
positions of any arm (4), it is possible to identify the arm f

with the wrong joint position readings if m42. The arm
with the wrong reading gives an estimate of xo that is
different from the estimate of the other m� 1 arms.
Therefore, a JPF is detected at arm f if

kx̂of ðhf Þ � x̂oiðhiÞk4gp1

for all i ¼ 1; . . . ;m and iaf , ð6Þ

where x̂oi is the estimate of xo using the measured positions
of the joints (hi) at arm i (forward kinematics), hf is the
vector of the measured positions at the joints of arm f, k:k
represents the Euclidean norm, and gp1 is a positive real
constant. The next step is to estimate the position of each
joint j ¼ 1; . . . ; nf of arm f

q̂fj ¼ cjðhf ; x̂oÞ, (7)

where

x̂o ¼
1

m� 1

Xm

i¼1;iaf

x̂oiðhiÞ

and cj is a kinematic function used to estimate the position
of joint j. In a planar system with only revolute joints, cj

can be written as the difference between the orientation of
the load and the sum of the measured positions of the
joints kaj of arm f. In a three-dimensional space, an
inverse kinematics method can be employed to estimate q̂fj

(in this case, the measured values of the joints iaj can be
used to eliminate the possible redundancy of the solutions).

Computing again the estimate of vector xo for arm f for
each new estimate q̂fj, the JPF at joint j of arm f is isolated
when

kx̂o � x̂of ðhf ; q̂fjÞkogp2, (8)

where x̂of ðhf ; q̂fjÞ is the vector of positions and orientations
of the load estimated for arm f substituting the measured
position of joint j by its estimate q̂fj and using the measured
positions of the other joints, and gp2 is a positive real
constant.
The choice of the thresholds gp1 and gp2 has a strong

influence in the performance of the FDI system. If the
values of gp1 and gp2 are too small, false alarms may occur
due to the presence of noise in the joint position readings.
If the thresholds are too large, JPFs can go undetected. If
the distribution of the noise in the joint position readings is
normal and its statistical properties are known, gp1 and gp2

can be computed as linear functions of the variance of the
noise in the joint position readings. In this way, the
thresholds are proportional to the variance of the noise,
and larger values of the variance imply in larger values of
the thresholds.
The procedure to detect and isolate JPFs when m42 can

be summarized as follows: compare the estimate of xo for
all arms (6); if all values are close, a JPF is not declared;
otherwise, compute, for all joints of the faulty arm, the
estimate of the joint positions (7) and test (8) for all joints;
if the test is satisfied for joint j, declare a JPF at this joint.
If m ¼ 2, the arm with the fault cannot be identified just

by analyzing the estimate of xo for each arm. In this case,
the joint positions estimation (7) should be performed for
the two arms using, instead of the value of x̂o, the estimate
obtained using the joint positions of the other arm.
The same should be done in (8), which can be used to
detect the JPF.
As it is possible to compute the velocity of the load by

using the joint velocities of any arm (5), JVFs can be
detected in a way similar to JPFs. Considering the
occurrence of only one fault, the JVF at joint j of arm f

is detected for m42 when

kv̂o � v̂of ð_hf ; hf ; _̂qfjÞkogv2, (9)

where v̂of ð_hf ; hf ; _̂qfjÞ is the velocity of the load estimated for
arm f substituting the measured velocity of joint j by its
estimate _̂qfj and using the measured velocities (_hf ) of the
other joints (forward kinematics), v̂o is the estimate of
the load velocities using the measured joint velocities of the
other arms, and gv2 is the threshold used to avoid that
faults be hidden due to the presence of noise in the joint
readings. In this work, gv2 is computed as a linear function
of the variance of the noise in the joint velocity readings.
When m ¼ 2, vo should be substituted by the estimated
velocity obtained using the joint velocities of the other arm.
4.2. Free-swinging and locked joint faults

FDI systems for single manipulators generally employ
the residual generation scheme (Visinsky et al., 1994). The
residual vector is generated by comparing the measured
states of the arm with their estimates obtained by a
mathematical model of the fault-free arm. This method,
however, does not work well in the presence of modeling
errors, generating false alarms or hiding the fault effects.
Robust techniques (McIntyre, Dixon, Dawson & Walker
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2005) and Artificial Intelligence techniques (Schneider and
Frank, 1996) have been used to avoid these problems. In
the approach presented in Vemuri and Polycarpou (2004),
the off-nominal behavior due to faults is mapped utilizing
an ANN trained using a robust observer, based on the
robot’s physical model. Overall, one problem with FDI
methods which rely on the system mathematical model is
that, for some real robots, detailed modeling is difficult.

To overcome this problem, Terra and Tinós (2001)
proposed a method where the mathematical model of the
robot is not necessary. A multilayer perceptron (MLP) is
used to map the dynamics of the arm and a radial basis
function network (RBFN) classifies the residual vector.
The MLP mapping is static, which is possible because the
states of the system are measurable, the sample time is
small, and control signals are used in the MLP inputs.

FDI for cooperative manipulators has been studied only
recently (Tinós et al., 2001). In Tinós et al. (2001),
following the line of Terra and Tinós (2001), one MLP is
trained to reproduce the dynamics of all arms and the load
of the fault-free cooperative system (2). The inputs of the
MLP are the joint positions, velocities, and torques in the
arms at instant t. The outputs of the MLP are the estimated
joint velocities of the fault-free system at instant tþ Dt,
which are compared to the measured joint velocities at
instant tþ Dt in order to generate the residual vector. The
residual vector is then classified by a RBFN that gives the
fault information. The use of only one MLP in Tinós et al.
(2001) is an interesting approach. However, the mapping of
the MLP is dependent on the load parameters such as the
load mass. If the system has to manipulate a different
object, the ANNs have to be trained again.

Here, the dynamic model of each arm is mapped by one
MLP. Thus, the mapping is not dependent on the object
parameters. If the sample period Dt is sufficiently small, the
dynamics of the fault-free arm i (1) can be written as

_qiðtþ DtÞ ¼ fð_qiðtÞ; qiðtÞ; hiðtÞ; siðtÞÞ, (10)

where fð:Þ is a nonlinear function vector representing the
dynamics of the fault-free arm i.

Each MLP i (i ¼ 1; . . . ;m) maps the dynamic behavior of
one fault-free arm (10). The inputs of the ith MLP are the
joint positions, velocities, torques, and end-effector forces
of arm i at instant t. The output vector of the ith MLP,
which should reproduce the joint velocities of the fault-free
arm i at time tþ Dt, can be written as

_̂qiðtþ DtÞ ¼ fð_qiðtÞ; qiðtÞ; hiðtÞ; siðtÞÞ þ eð_qiðtÞ; qiðtÞ; hiðtÞ; siðtÞÞ,

(11)

where eð:Þ is the vector of mapping errors. The residual of
arm i is defined as

r̂iðtþ DtÞ ¼ _qiðtþ DtÞ � _̂qiðtþ DtÞ. (12)

From (10)–(12), it can be observed that the residual vector
of arm i in the fault-free case is equal to the vector of
mapping errors, which must be sufficiently small when
compared to the fault function vector in order to allow the
fault detection. The residual vector r̂ðtþ DtÞ ¼ ½r̂T1 ðtþ

DtÞ; . . . ; r̂Tmðtþ DtÞ�T is then classified by an RBFN that
gives the fault information. As the residual vector of FSJFs
and LJFs occurring at the same joint can occupy the same
region in the input space of the RBFN, an auxiliary input f

that gives information about the velocity of the joints is
used. As there is noise in the measurement of the joint
velocities, the i ¼ 1; . . . ; n component (n is the sum of the
number of joints of all arms) of f is defined as

ziðtÞ ¼
1 if j _qiðtÞjodi;

0 otherwise;

(

where di is a threshold that can be chosen based on the
measurement noise. In this work, the RBFN is trained by
the Kohonen’s self organizing map (Terra and Tinós,
2001). The fault criteria, which is used to avoid false alarms
due to misclassified individual patterns, is defined as

fault k ¼ 1 if ak ¼ max
q
j¼1ðajÞ for d consecutive samples;

fault k ¼ 0 otherwise;

(

where ak is the output k ¼ 1; . . . ; q� 1 of the RBFN
(output q refers to the normal operation).

5. Control reconfiguration

5.1. Joint velocity and position faults

When a JPF or JVF is isolated, the sensor readings of the
faulty joint are ignored and the joint position or velocity is
estimated based on the kinematic constraints. As the joint
positions of the faulty arm f were already estimated by the
FDI system (Section 4), the component j ¼ 1; . . . ; n of the
new joint position vector is defined as

q̂½j� ¼
q̂j if a JPF is isolated at joint j;

h½j� otherwise;

(

where q̂j is the estimate of the joint j position based on the
other joint readings (7), and h½j� is the measured position of
joint j. In a similar way, the component j of the new joint
velocity vector is defined as

_̂q½j� ¼
_̂qj if a JVF is isolated at joint j;

_h½j� otherwise;

(

where _̂qj is the estimate of the joint j velocity based on the
other joint readings, and _h½j� is the measured velocity of
joint j.

5.2. Free-swinging joint faults

In this section, the control problem of cooperative
systems with passive joints is addressed. Passive joints,
which are the joints without actuation, appear in robotic
manipulators as a result of free-swinging joint failures
or as an inherent characteristic of the project. A single
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manipulator with passive joints is subject to acceleration
constraints usually not integrable and, for that reason, it
falls in the category or nonholonomic systems with second
order nonintegrable constraints, or nonholonomic dynamic
systems, which cannot be controlled by a smooth feedback
controller based on Brockett’s work (Liu et al., 1999).

Though a single manipulator with passive joints is, in
general, a nonholonomic system, cooperative manipula-
tors, rigidly connected to an undeformable load, with
passive joints have the holonomic property (Liu et al.,
1999). Thus, in Liu et al. (1999), a smooth control law
based on the classical PD plus gravity compensation
scheme is proposed to control the position of two
cooperative arms ðm ¼ 2Þ with a number of actuated joints
naXk, where k is the number of coordinates of motion in
the load.

In Tinós et al. (2006), a controller for the system with
passive joints based on the decomposed control of the
motion and squeeze (Wen and Kreutz-Delgado, 1992) is
proposed for the general case m41. A stable motion
control with compensation of the gravitational torques is
firstly projected ignoring the squeeze forces when naXk.
For this purpose, a Jacobian matrix QðqÞ, which relates the
velocities in the active joints to the load velocities (or the
torques in the actuated joints to the resulting forces in
the load by using the virtual work principle), is computed.
Then, if the number of actuated joints is greater than the
number of coordinates of motion in the load (na4k), the
squeeze control is projected considering the component of
the squeeze forces caused by the motion as a disturbance.

In this way, the control law applied in the actuated joints
for the system with passive joints is given by

sa ¼ samg þ sas, (13)

where samg is the motion control law with compensation for
the gravitational torques and sas is the squeeze control law.

The method to calculate the Jacobian matrixQðqÞ for the
cooperative system with m41 is presented in the following.

From (5)

mvo ¼ D1ðq1Þ_q1 þD2ðq2Þ_q2 þ � � � þDmðqmÞ_qm. (14)

Partitioning (14) in the quantities related to the passive and
actuated joints

mvo ¼
Xm

i¼1

DaiðqiÞ_qa þ
Xm

i¼1

DpiðqiÞ_qp

¼ DaðqÞ_qa þDpðqÞ_qp, ð15Þ

where a refers to the quantities related to actuated joints
and p to the quantities related to passive joints, qa is the
vector of angular positions of the actuated joints, and qp is
the vector of angular positions of the passive joints. Two
cases can be considered from (5). When m is even

Xm

i¼1

ð�1Þiþ1DiðqiÞ_qi ¼ 0. (16)
Partitioning (16)

Xm

i¼1

ð�1Þiþ1DaiðqiÞ_qa þ
Xm

i¼1

ð�1Þiþ1DpiðqiÞ_qp

¼ RaðqÞ_qa þ RpðqÞ_qp ¼ 0 ð17Þ

which relates actuated and passive joint velocities when m

is even. It is interesting to observe that such relationship
cannot usually be found for single manipulators with
passive joints (Liu et al., 1999). When m is odd

Xm

i¼1

ð�1Þiþ1DiðqiÞ_qi ¼ vo. (18)

Partitioning (18)

RaðqÞ_qa þ RpðqÞ_qp ¼ vo (19)

which relates actuated and passive joints velocities when m

is odd. Using (15), (17), and (19),

vo ¼ QðqÞ_qa, (20)

where, when m is even

QðqÞ ¼
1

m
ðDaðqÞ �DpðqÞR

#
p ðqÞRaðqÞÞ, (21)

where R#
p ðqÞ is the pseudo-inverse of matrix RpðqÞ, and,

when m is odd,

QðqÞ ¼ ðmI�DpðqÞR
#
p ðqÞÞ

�1
ðDaðqÞ �DpðqÞR

#
p ðqÞRaðqÞÞ.

(22)

One can observe that R#
p ðqÞ must exist in the last equation

(the robot configurations where R#
p ðqÞ does not exist are

discussed in Liu et al., 1999).
The motion control of the system with passive joints

when naXk is given by

samg ¼ sam þ sag, (23)

where the motion component is given by

sam ¼ QTðT�1KpDxo þ KvDvoÞ, (24)

where Dxo ¼ ðxod � xoÞ is the load position error, xod is the
desired position of the load, Kp and Kv are positive definite
diagonal matrices, and Dvo ¼ ðvod � voÞ is the load velocity
error. The singularity of T depends on the minimal
representation of the orientation chosen. The compensa-
tion for the gravitational, centrifugal, and Coriolis terms is
given by

sag ¼ ga � ðR
#
p RaÞ

Tgp þQTbo (25)

when m is even, and

sag ¼ ga � ðR
#
p ðQ� RaÞÞ

Tgp þQTbo (26)

when m is odd.
The squeeze control problem when the number of

actuated joints (na) is greater than the number of
coordinates of motion in the load (k) is now addressed.
The squeeze forces in the load can be written as (Wen and
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Fig. 2. Cooperative manipulator system composed of two UARMII

robots.
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Kreutz-Delgado, 1992)

hos ¼ hosc þ hosm, (27)

where hosm is the term of the squeeze forces induced by the
motion due to the squeeze components of the d’Alembert
forces, and hosc is the squeeze component that is not
affected by the motion. An important property of hosm is
that it is not affected by joint torques in the form DThosc
due to the motion and squeeze decomposition. Hence, hosm
can be treated as a disturbance.

The term hosm goes to zero as t!1 if an asymptotically
stable motion control law is used. As the transient
performance and convergence rate of hos are influenced
by hosm in a feedback control approach, Wen and Kreutz-
Delgado (1992) suggests a pre-processing of the squeeze
forces by a strictly proper linear filter, such as an
integrator, for the fault-free system.

The following squeeze control law for the system with
(na4k) at time t is utilized (Tinós et al., 2006)

sas ¼ �D
T
saðqÞbs, (28)

where

DsaðqÞ ¼

Da1ðq1Þ 0

. .
.

0 DamðqmÞ

2
664

3
775

and DaiðqiÞ relates velocities of the actuated joints at arm i

and load velocities. The vector bs gives the squeeze forces
that should be applied at the load by the squeeze forces
controller when there are passive joints in the arms of the
cooperative system. For the cooperative system with
passive joints, if the arms are not kinematically redundant,
it is not possible to independently control all components
of the squeeze forces. In (28), the components of bs related
to the squeeze forces that are not directly controlled are
computed as a function of the components that are directly
controlled. The components of the desired squeeze forces
that should be applied by the other arms are then
computed based on the components computed for the
arm f and on the geometry of the grasping. In the case of
two manipulators grasping the object, the magnitude of the
desired squeeze forces are equal for both arms. The
integrator suggested in Wen and Kreutz-Delgado (1992)
to guarantee the stability of the force loop in the fault free
system is employed for the system with passive joints.

In summary, when an FSJF is isolated and the trajectory
is reconfigured (see Section 3), the controller employed for
the fault-free system is switched to a new controller defined
by (13), (23), (25), (26), and (28). This new controller,
which is decomposed in control of motion and control of
squeeze force, is applied only in the actuated joints.

5.3. Locked joint faults

A similar control system can be used to control the
system with locked joints. However, the problem of the
locked joints must be considered in the trajectory planning.
Here, this problem will not be considered and only the
control problem for the system with locked joints
performing a feasible trajectory will be considered. As in
the case of the system with passive joints, a Jacobian matrix
relating the actuated joints, which are the joints that are
not locked, and the load velocities can be defined. As the
velocities of the locked joints are equal to zero, then

_xo ¼ Ql _qa, (29)

where

Ql ¼
1

m
Da. (30)

Using the same procedure described in the last section, the
control law given by (13) and (23) is utilized, where

sam ¼ QT
l ðT
�1KpDxo þ KvDvoÞ, (31)

sag ¼ ga þQT
l bo (32)

and ss is given by (28).

6. Results

The fault tolerance system was applied in a real
cooperative system with two UARMII arms (Fig. 2). Each
UARMII is a 3-joint, planar manipulator that floats on a
thin air film on an ‘‘air table’’; the armś bases are fixed to
the table. The two arms are equal and the axes of all joints
are parallel to the gravity force. The mass of links 1 and 2 is
0.85 kg, the mass of link 3 is 0.625 kg, and the link length is
0.203m. The cooperative system is controlled by a PC
running Matlab. This is possible because the drivers for the
UARMII servo board are written as Matlab mex-files.
Each joint of the UARMII contains a brushless DC direct-
drive motor, an encoder, and a pneumatic brake, which
allows one to simulate all faults discussed here. The use of
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direct-drive motors and the fact that the arm floats in
an air table significantly reduce the friction in the joints.
The cooperative manipulators control environment
(CMCE), which allows one to perform simulations or
to control directly the actual cooperative system with
the same graphical user interface (GUI), is used to control
and to monitor the real system. In the experi-
ments presented here, the sampling period adopted is
0.05 s and the joint velocities are derived from the
encoder readings using the adaptive filter presented in
Wijngaard (1996).

Two MLPs (one for each robot) were utilized, each one
with 12 inputs, 37 neurons in the hidden layer, and 3
outputs. The MLPs were trained with 3250 patterns
obtained in 50 random trajectories of the fault-free
cooperative system. The RBFN had 12 inputs and 13
outputs (6 FSJFs, 6 LJFs, and normal operation) and it
was trained with 2506 patterns obtained in 240 random
trajectories of the cooperative system with FSJFs and LJFs
at different joints and 20 without faults. The parameters of
Table 1

Results of the FDI system applied to a team of two cooperative

manipulators

Set Detected faults Isolated faults False alarms MTD(s)

1 337 (93.61%) 260 (72.22%) 1 (6.67%) 0.469

2 333 (92.50%) 247 (68.61%) 0 (0.00%) 0.419

3 325 (90.28%) 268 (74.44%) 0 (0.00%) 0.458

MTD means mean time to detection.

Fig. 3. Position and orientation of the object in a trajectory with an FSJF at

started at t ¼ 1 s (dotted line ‘‘a’’) and was detected at t ¼ 3:8 s (dotted line ‘‘
the FDI system are d ¼ 4 samples, gp1 ¼ gp2 ¼ 0:05,
gv1 ¼ gv2 ¼ 1:5, and di ¼ 4� 10�3.
The FDI system was tested considering three trajectory

sets, each of them with 360 random trajectories of the
cooperative system with FSJFs and LJFs at different joints
and 15 without faults. The second and third sets had the
same desired trajectories but an object of mass of 0.025 kg
was manipulated in the second set and an object of 0.45 kg
in the third set. The desired trajectories of the first set were
different from the ones of the other sets and the mass of
load is equal to 0.45 kg. The results of the FDI system
considering the four faults described here is summarized in
Table 1.
Both strategies discussed in Section 3, namely, reconfi-

guration of the system starting with zero velocities and with
the current velocities, were tested. In the last case, the new
desired trajectory was a third order polynomial with initial
velocities of the load equal to the current ones. In the real
system, reconfiguration of the system starting with the
current velocities should not be applied in cases where the
velocities of the load are high and the resulting desired
trajectory requires joint positions outside of their physical
limits.
Figs. 3–5 show a trajectory of the real system where an

FSJF at joint 1 of arm 1 was isolated at t ¼ 3:8 s and the
trajectory and control laws were reconfigured. One can
observe that the time necessary to detect the fault in this
trajectory (2.8 s) was higher than the mean time to detection
(MTD) for the test sets presented in Table 1. In this
trajectory, the time elapsed until the fault is detected was
high because the velocity of the faulty joint did not increase
joint 1 of arm 1. The dashed lines show the desired trajectory. The FSJF

b’’).
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Fig. 4. Squeeze forces in the trajectory shown in Fig. 3. The torque component of the squeeze forces was not controlled after the control reconfiguration.

Fig. 5. Components of the residual vector in the trajectory with an FSJF at joint 1 of arm 1. The components are shown from t ¼ 0 s to t ¼ 3:8 s (when the

fault was detected).
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abruptly, due to the fact that the load kept moving in a
trajectory close to the desired trajectory (Fig. 3). This fact
happened in the real system because the gravitational terms
did not influence the velocity of the joint and because the
load was not heavy. One can also observe that the
components of the squeeze forces in the y-axis increased
(Fig. 4). As a result, some components of the residual vector
increased (Fig. 5), making possible the detection of the fault.
After the fault was detected in this trajectory, the brakes
were not applied and the desired trajectory started with the
actual velocities. It is possible to observe that the system was
controlled even with the presence of the passive joint.
Fig. 6 shows a trajectory of the real system where a JPF

at joint 2 of arm 1 started at t ¼ 1:0 s and it was isolated at
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Fig. 6. Position and orientation of the object in a trajectory with JPF at joint 2 (arm 1) for the real system. The JPF started at t ¼ 1 s and was detected at

t ¼ 1:05 s (vertical dotted line).

R. Tinós et al. / Control Engineering Practice 15 (2007) 615–625624
t ¼ 1:05 s. After the fault was detected, the controller
ignored the measure produced by the sensor of position
of the joint 2 of arm 1, and utilized its estimate produced
by (7).

The number of correctly isolated faults was small in the
system mainly because FSJFs were sometimes mistaken
with LJFs. This occurs because sometimes the velocities of
the faulty vectors were small due to the small gravitational
torques at the joints. However, in these cases, even with
FSJFs, the load converged to the desired positions and the
fault did not compromise the performance of the system.
This can occur, for example, if it is not necessary to apply
high torques at the faulty joint in a given trajectory.

7. Conclusions

This work presents a fault tolerance framework for
cooperative manipulators. The faults are firstly detected
and isolated and, then, the control system and the desired
trajectory are reconfigured. Tests of the fault tolerance
system applied to two cooperative robots were presented.

The performance of the fault detection and isolation
(FDI) system can be improved with additional tests. When
a fault is detected, the brakes can be activated and tests can
be performed in order to verify if the fault was correctly
isolated. For example, if a locked joint fault (LJF) is
declared, the controller can try to move this joint in order
to confirm the fault isolation. Similar tests can be made to
confirm the isolation of other faults. This strategy can also
be used to isolate multiple faults, which can be detected but
cannot be correctly isolated by the proposed FDI system.
When multiple faults are considered, additional tests to
isolate all faults must be made in all joints after the
detection of a fault. A relevant future work is to study
additional tests to be made to isolate multiple faults.
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